
SecCloud: Bridging Secure Storage and Computation in Cloud

Lifei Wei, Haojin Zhu, Zhenfu Cao, Weiwei Jia,
Department of Computer Science and Engineering

Shanghai Jiao Tong University
Shanghai, China

Email: {weilifei, zhu-hj, zfcao, jlss}@sjtu.edu.cn

Athanasios V. Vasilakos
Department of Computer and Telecommunications Engineering

University of Western Macedonia
Kozani, Greece

Email: vasilako@ath.forthnet.gr

Abstract—Cloud computing becomes a hot research topic in
the recent years. In the cloud computing, software applications
and databases are moved to the centralized large data centers,
which is called cloud. In the cloud, due to lack of physical
possession of the data and the machine, the data and compu-
tation may not be well managed and fully trusted by cloud
users. Existing work on cloud security mainly focuses on cloud
storage without taking computation security into consideration.
In this paper, we propose SecCloud, a novel auditing scheme
to secure cloud computing based on probabilistic sampling
technique as well as designated verifier technique, which aims
to consider secure data storage, computation and privacy
preserving together. We also discuss how to optimize sampling
size to minimize the auditing cost. Detailed analysis and
simulations have demonstrated the effectiveness and efficiency
of the proposed scheme.

Keywords-Designated verification; Privacy preserving; Batch
verification; Data storage secure; Cloud computing.

I. INTRODUCTION

The recent development of cloud computing has shown its
potential to reshape the current way IT hardware is designed
and purchased. Among numerous benefits, cloud computing
offers customers a more flexible way to obtain computation
and storage resources “on demand”. Rather than owning
(and maintaining) a large and expensive IT infrastructure,
customers can now rent the necessary resources as soon as,
and as long as, they need them. Thus, customers can not
only avoid a potentially large up-front investment (which is
particularly attractive for small companies and startups), they
may also be able to reduce their costs through economies
of scale and by paying only for the resources they actually
use [1].

Even though cloud computing is envisioned as a promis-
ing service platform for the next-generation Internet, security
and privacy is one of major challenges which prevent its
wide acceptance in practice. Different from the traditional
computing model where the users have a full control of
data storage and computing, cloud computing means the
management of physical data and machine is delegated
to the cloud service provider while the users can only
retain some control over the virtual machines. Therefore,
the correctness of data storage and computation is putting

at a risk due to lack of control of data security for data
owners. In this study, we further classify the cloud data
security into two major classes: Cloud Storage Security and
Cloud Computation Security, where the former is referred to
ensuring the integrity of outsourced data stored at untrusted
cloud server while the latter refers to checking the result
correctness of the outsourced computation performed by
untrusted cloud server.

The current research on secure cloud computing still
focuses on storage security. However, outsourced compu-
tation security receives less attention. For sake of saving
computational resources, the service provider may not have
performed the necessary computations but claims to have
done so. Further, the centralized architecture makes cloud
servers more easily to be a single point of failure, which has
been witnessed by the recent meltdown of Google gmail sys-
tem [2]. Under byzantine failure or even external attacks, the
cloud may perform unreliable computation operations while
choose to hide the computations errors for their benefits.
This cheating behavior of cloud providers, if undetected,
may render the results useless. Even from the point of
accountability, some secure cloud computing mechanism
should be in place to meet the needs of deciding whether
cloud provider or the users should be responsible for it once
there is any problem taking place. Note that, it is quite
natural for the provider to initially suspect a problem with
the customer’s software, and vice versa [3].

Due to the limited computing and communication re-
sources, cloud users cannot afford the cost incurred by
computing resulting verification. One promising approach
for relieving cloud users from expensive verification cost is
introducing a trusted auditor who is behalf of the users to
audit cloud computing. Even though public auditability has
been proposed in the context of secure storage in cloud [4],
[5], public auditability in secure cloud computing receives
less attentions. More closely related references are secure
remote computation in distributed system [6]. However,
none of the proposed schemes are targeted at secure cloud
computing. Further, privacy preserving is an critical issue
for secure cloud computing while few of existing researches
take it into consideration.

To achieve secure computing audit for cloud, one straight-

2010 International Conference on Distributed Computing Systems Workshops

978-0-7695-4079-5/10 $26.00 © 2010 IEEE

DOI 10.1109/ICDCSW.2010.28

56

2010 International Conference on Distributed Computing Systems Workshops

978-0-7695-4079-5/10 $26.00 © 2010 IEEE

DOI 10.1109/ICDCSW.2010.28

52

2010 International Conference on Distributed Computing Systems Workshops

978-0-7695-4079-5/10 $26.00 © 2010 IEEE

DOI 10.1109/ICDCSW.2010.36

52

2010 IEEE 30th International Conference on Distributed Computing Systems Workshops

978-0-7695-4079-5/10 $26.00 © 2010 IEEE

DOI 10.1109/ICDCSW.2010.36

52

forward method is double-check each computing result. The
cloud provider may provide the inputs and overall computing
result to auditor, which will follow an identical procedure to
compute the same result and then compare it with the one
provided by cloud provider. This simple scheme may lead
to a waste of I/O and computing resources. Note that data
transfer bottlenecks are regarded top ten obstacles which
may prevent the overall success of cloud computing [1].
In [7], a Commitment-Based Sampling (CBS) technique is
introduced in the conventional grid computing however it
does not take the privacy issue into consideration. In this
paper, we introduce a privacy preserving CBS technique by
integrating CBS with the designated verification technique.

The contributions of this paper can be summarized as
follows.

• First, we model the problems in the cloud computing
by giving the formal definitions of uncheatable and
privacy preserving.

• Second, we propose an uncheatable framework to
achieve both the data storage and computing security.

• Third, we propose an advanced scheme to achieve
privacy preserving through the designated verification
technique and computational efficiency through batch
verification technique.

• Lastly, we discuss how to minimize the auditing cost
by choosing the optimal sampling size.

To the best of our knowledge, this work is the first effort
towards jointly considering both of cloud storage security
and computation security. The remainders of this paper is
organized as follows. A review on related work is given
in Section II. Section III presents the system model and
our design goals. Some preliminary knowledge is given
in Section IV. Later, we first provide an overview of our
scheme in Section V and then present our scheme with
the performance optimization method in Section VI. Section
VII gives the security analysis and performance evaluation.
Finally, Section VIII concludes this whole paper.

II. RELATED WORK

Security and privacy in cloud computing has received ex-
tensive attentions recently. Generally speaking, the research
on cloud computing falls into the two cases: cloud storage
security and cloud computing security.

Cloud storage security mainly addresses the secure out-
sourced storage issue. In [8], Ateniese et al. first defined a
model for provable data possession (PDP), which allowed
a client that had data stored at an untrusted server to verify
that the server possessed the original data without retrieving
it. They utilized RSA-based homomorphic tags for auditing
outsourced data, but they did not consider the dynamic data
storage. In their later work [9], Ateniese et al. proposed a
partially dynamic version of the PDP scheme using sym-
metric key cryptography. However, it did not support public

auditability. In [10], a similar partial dynamic data storage in
the cloud scenario was proposed and this challenge-response
protocol could both determine the data correctness and locate
possible errors. Juels et al. [11] proposed the definition
of proof of retrievability (PoR), which used spot-checking
and error-correcting codes to ensure both possession and
retrievability for data file on archive service system. Wang
et al. [5] first achieved both public verifiability and dynamic
data storage operations employing an Third Party Auditor
and improving the Proof of Retrievability model [12] by
using classic Merkle Hash Tree [13] construction for BLS
[14] based block tag authentication. Later, they proposed
a scheme achieving privacy preserving public verifiability
as well as the dynamic data storage operations in [4] by
utilizing the public key based homomorphic authenticator
and uniquely integrate it with random mask technique. The
further work explored the technique of bilinear aggregate
signature for TPA can verify data auditing in a complexity
of O(n). Erway et al. [15] proposed the first construction of
dynamic provable data possession, which extended the PDP
model in [8] to achieve provable updating stored data using
rank-based authenticated skip lists.

Compared with secure cloud storage, secure cloud com-
puting still receives less attentions. The most related re-
searches include secure remote computations. Golle and
Mironov [16] proposed a ringer scheme in distributed com-
puting where the supervisor sent to the participant some
pre-computed results without disclosing the corresponding
inputs. A recent research by [6] was dividing sequential tasks
into smaller subtasks, permuting them among participants
and then enabling the detection of individual and colluding
malicious participants. For secure grid computing, Du at
el. [7] proposed an uncheatable grid computing using a
commitment-based sampling technique to detect whether
the participant was cheating or not. Their scheme handled
generic computations gracefully and also proposed two
improvement of their basic scheme.

However, the existing researches discuss secure computa-
tion in the general parallel or grid computing case without
considering the specific requirement of cloud computing.
Further, the privacy issue is not taken into consideration
either. In this study, we aim to introduce the concept of
secure computation in the context of cloud computing for
the first time.

III. PROBLEM FORMULATION

In this section, we will present our system architecture,
model formulation and design goals.

A. Models of Cloud Computing

We consider a general cloud computing model constituted
of n cloud computing servers, S1,S2, . . . ,Sn, which may be
under the control of one or multiple cloud service providers

57535353

(CSPs). A cloud user (CU) could send its service request
to CSPs, which allocate cloud computing resources by
means of customized Service Level Agreements (SLAs). For
example, to perform a batch-processing task, by employing
the existing programming abstraction techniques such as
MapReduce [16] and its open-source counterpart Hadoop
[11], CSP could divide such a task into multiple sub-task
and allow them parallelly executed across hundreds of Cloud
Computing servers.

B. Adversarial Model

We consider an adversary A that could corrupt a small
set of servers and is Byzantine, i.e., can behave arbitrarily.
Similar to [17], we assume that our adversary controls at
most b servers for any given epoch. Obviously, adversary
cloud launch attacks to achieve different goals, which are
summarized as follows:

• Storage-Cheating Model: In this model, the cheating
server launches various attacks towards storage func-
tionality of the cloud. For example, the cheating servers
might delete rarely access data files to reduce the
storage cost (semi-honest case) or arbitrarily modify the
stored data to compromise the data integrity (malicious
case). In both of cases, the cloud could simply reply
the cloud users’ storage query with a random number,
which represents a great challenge for cloud users due
to lack of physical possession of the potentially large
size of outsourced data and constrained computing and
storage resources.

• Computation-Cheating Model: In this model, as-
sume that a computing service F is comprised
of sub-tasks {f1, f2, . . . , fn} and each of sub-task
may involve the data located at position vector p⃗i,
and thus the expected computing result is R =
{f1(x⃗p1), f2(x⃗p2), ..., fn(x⃗pn)}). The domain X is de-
fined as x⃗p1 , x⃗p2 , ..., x⃗pn . The cheating cloud could
cheat the cloud users by the following two ways:
(1) the cheating server computes F ′ = fi(x⃗pi) for
some i where F ′ ⊂ F and return the cloud users a
random number instead, but claims to have completed
all the computations; (2) the cloud server chooses
x ∈ X ′ ⊂ X to compute correctly and uses different
x̂ /∈ X which has much lower computational cost or
just claims to use the correct data x while the original
data is missing.

• Privacy-Cheating Model In this model, an untrusted
cloud server (or a cloud server hacked by attackers)
may compromise the cloud users’ privacy by leak-
ing their confidential information to other parties, e.g.
their business competitors, which may introduce serious
consequences. To provide the data confidentiality, one
straightforward approach is to encrypt the data before
submitting them to the cloud server. However, such
an approach may prevent the regular cloud computing

from being processed. In this paper, we consider an
illegally private information selling model: the cheat-
ing/hacked cloud servers illegally sell the cloud users’
private information to other parities, e.g. their business
competitors. However, we argue that, to sell the private
information, the cheating servers should provide corre-
sponding proof to demonstrate that the stored data and
computing results because any buyers cannot accept
unauthentic data. This model is similar to software
selling [18] in our daily life. In this case, software
vendor may embed digital signature in its products to
allow the users to authenticate them as correct, free
of viruses, etc. Such an authentication may be strictly
limited to paying customers rather than the illegitimate
users to avoid software piracy.

The existing studies mainly focus on the first model while
leaving the second and third model unexplored. Therefore,
the uncheated and yet private-information-selling-thwarted
cloud computing is the major interest of this paper. Similar
to secure storage auditing, we assume the existence of a
designated agency (DA) in our model, who is responsible
for auditing the security of data storage and computation
of cloud services for cloud users. DA is expected to have
enough computational and storage capability to perform the
auditing operations.

Cloud Servers

Cloud Users

Designated Agency

Cloud Service

Provider

Figure 1. Cloud architecture in our protocol

C. Secure Cloud Computing Model

1) Uncheatable Cloud Computing: To formally define the
security model in the cloud computing, we introduce two
concepts Computing Secure Confidence (CSC) and Storage
Secure Confidence (SSC) to indicate the trust level of cloud
computing and storage security, respectively. Here, CSC
is defined as CSC = |F ′|/|F | and SSC is formalized
as SSC = |X ′|/|X|. In both cases, cloud computing or

58545454

storage is regarded as trustable if CSC (SSC) equals 1 while
untrustable if it is 0.

Definition 1: (Uncheatable cloud computing) Let
Pr(Cheating Succussfully) be the probability that
a cloud server with both CSC and SSC could successfully
cheat without being detected by sampling based verifiers.
We say the cloud computing is uncheatable, if for arbitrary
sufficiently small positive number ϵ, there exists a sampling
size t such that the following inequation always satisfies

Pr(Cheating Succussfully)

= Pr(CSC,SSC) < ϵ (1)

and
t < |X|. (2)

2) Privacy-cheating Discouragement: To discourage the
CSs from leaking cloud users’ data information, we in-
troduce a novel privacy-cheating discouragement model. In
this model, it is required that any storage and computation
authentication should be under the authorization of the cloud
users. In other words, the cloud users could discourage CSP
from selling their data or computational results to others
by limiting the range of the data/computation verifiers. To
achieve this, we introduce the following definition.

Definition 2: (Privacy preserving) Let InfoLeak de-
note the event that valid information is leaked by CSP. The
cloud computing is privacy preserving, if for a sufficiently
small positive number ϵ, the following equation holds

Pr(InfoLeak) < ϵ. (3)

D. Design goals

The proposed scheme is expected to achieve the following
security and performance goals:

1) Secure data storage: To ensure the data is stored in
cloud securely, the proposed scheme should ensure
that the users and DA could audit the stored data
effectively.

2) Secure Cloud Computation: To enable secure cloud
computing, the proposed scheme should ensure that
the computation could be audited by users or DA.
Considering the fact that the users suffer from compu-
tational and transmission constraints, DA’s auditing is
a promising approach for securing cloud computation.

3) Privacy Cheating Discouragement: The proposed
scheme should ensure that only designated parties
(e.g., CSs or DA) could verify the stored data or
computation results, which discourages the CSs from
compromising users’ privacy, even if the cloud servers
are compromised by the attackers.

4) Efficiency The computation and transmission over-
head of secure cloud computing auditing should be
minimized.

IV. PRELIMINARIES AND NOTATION

A. Bilinear pairing

Let G1 be a cyclic additive group with an operation (+)
and G2 be a cyclic multiplicative group with an operation
(·). Both of them have the same prime order q, that is ,
|G1| = |G2| = q. Let P be a generator of G1. An efficient
admissible bilinear map ê : G1 × G1 → G2, with the
following properties:

• Bilinear: for all P ∈ G1 and a, b ∈ Z∗
q , ê(aP, bP) =

ê(P, P)ab.
• Non-degenerate: There exists P ∈ G1 such that

ê(P, P) ̸= 1.
• Computable: there is an efficient algorithm to compute

ê(P,Q) for any P,Q ∈ G1.

Typically, we can implement the bilinear map using Weil or
Tate pairing [19]. Most of the identity based cryptographic
schemes [20], [21] are achieved by employing this tech-
nique.

B. Designated Verifier Signature

It is a special signature scheme [22]–[27] that the des-
ignated verifier can take its private key and the signer’s
public key to verify the signatures, but it is unable to use
this signature to convince any other parties that the message
is indeed signed by the original signer, even if the verifier is
willing to reveal its private key. This is achieved on that the
verifier could take advantage of its private key to generate a
fake signature and any other parties are unable to distinguish
whether these messages are authentic, i.e. whether they have
been signed by the users or not. However, there is few
studies on the batch verification of the designated verifier
signatures. Another contribution of this paper is designing
such a batch verification algorithm for the performance
improvement.

C. Merkle hash tree

Merkle hash tree is a well-known authentication structure
proposed by Merkle [13], which is constructed as a binary
tree where each leaf of the tree is a hash value of authentic
data values. It is often used to efficiently and securely to
ensure the authencithy and integrity.

D. Discrete logarithm assumption

Discrete logarithms are group-theoretic analogues of or-
dinary logarithms. In particular, an ordinary logarithm logab
is a solution of the equation ax = b over the real or complex
numbers. Similarly, if g and h are elements of a finite cyclic
group G then a solution x of the equation gx = h is called a
discrete logarithm to the base g of h in the group G. Discrete
logarithm assumption is that given g and h for randomly-
chosen g, h ∈ G, it is difficult to find x such that gx = h.

59555555

E. Bilinear Diffie-Hellman assumption (BDH)

Given a randomly chosen P ∈ G1, as well as aP , bP and
cP (for unknown randomly chosen a, b, c ∈ Z∗

q), compute
ê(P, P)abc. For the BDH problem to be hard, G1 and G2

must be chosen so that there is no known algorithm for
efficiently solving the Discrete logarithm problem in either
G1 or G2.

V. THE PROPOSED BASIC SCHEMES

In this section, we propose a basic secure cloud com-
puting scheme based on the identity-based cryptography.
Our scheme consists of four steps: “System initialization”,
“ Secure cloud storage”, “Secure cloud computation”, and
“Commitment verification”. Figure 2 gives an overview of
data and service flows in the protocol. These algorithms are
constructed as follows.

Figure 2. Data and service flow in the proposed protocol

A. System initialization

The System Initialization Operator (SIO) 1 runs setup
algorithm to generate the system parameters and master
secret keys. At the system initialization phase, SIO gener-
ates system parameters and public keys. Specifically, SIO
selects two cycle groups G1 and G2 with prime order q
and an admissible pairing ê : G1 × G1 → G2; chooses
an arbitrary generator P ∈ G1. In addition, it chooses
three cryptographic hash functions H : {0, 1}∗ → Zq,
H1 : {0, 1}∗ → G1 and H2 : {0, 1}∗ → Z∗

q . After

1In reality, the government or a trusted three party could play the role of
SIO. Since the system initialization and registration step could be performed
off-line, it will not bring heavy burden to these organization.

setting the system parameters, SIO picks a random number
s ∈ Z∗

q as its secret key and sets its public key as
Ppub = sP . Finally, the system parameters are params =
(G1,G2, q, ê, P, Ppub,H,H1,H2). The system’s secret is s,
which is kept safe.

When a cloud user applies for the cloud services, it needs
to register to SIO. The user submits its identity ID to SIO
and receives system parameters params and a secret key
skID from SIO in a secure way. Specifically, the procedure
is as follows:

skID = s ·QID (4)

where QID = H1(ID). Note that system initialization and
registration step could be performed off-line.

B. Secure Cloud Storage

1) Data Signing: To enable the storage and auditing,
the cloud users need to generate a corresponding authen-
tication information for each transmission block D =
{m1,m2, ...,mn}. For each block mi, the user first gener-
ates a identity based signature by (1) selecting a random
numbers ri ∈ Z∗

q and computing Ui = ri · QID; (2)
using the secret key to compute Vi = (ri + hi) · skID
where hi = H2(Ui∥mi). To preserve the privacy, the
user then transforms the signature through the idea of
designated signature. It computes Σi = ê(Vi, QCS) and
Σ′

i = ê(Vi, QDA) returns {Ui,Σi,Σ
′
i} instead of signature

(Ui, Vi), where QCS and QDA are the identity of the
cloud servers and designated agency, respectively. Here, the
signature σi = (Ui,Σi,Σ

′
i) on each mi has been generated

and is referred as Φ = {σ1, σ2, ..., σn}. Finally, the user
sends the data and corresponding signature pairs {D,Φ} to
the cloud server and deletes them from local storage.

2) Data Verification: CSs or DA could checks its validity
of the stored data by verifying the following equation:

Σi
?
= ê(Ui +H2(Ui∥mi)QIDi , skCS) (5)

If the equation (5) holds, CSs or DA is convinced that users
data is securely stored authenticated in the server. Otherwise,
the stored data has been compromised.

Note that, privacy cheating is discouraged in the proposed
scheme because only CSs or DA could verify the results and
the positions of data storage whereas any other parties could
not check it since they do not have the cloud servers’ private
keys. From the definition of our model, privacy preserving
is improved.

C. Secure Cloud Computation

The cloud computation auditing protocol is based on
Merkle hash tree based commitment scheme, which includes
the following three steps: .

60565656

1) Computation Request:: The cloud user submits a num-
ber of computational service requests F = {f1, f2, ..., fn}
which could be considered as a set of functions as well
as the positions index of data blocks P = {p⃗1, p⃗2, ..., p⃗n}
to cloud server. The functions fi ∈ F can be considered
as some basic functions such as data sum, data average,
data maximum, or other complicated computations based
on these functions and on the data which are stored in the
positions p⃗i ∈ P .

2) Computation Commitment Generation:: When the
cloud server receives the computing requests {F, P}, it first
inputs the data in the position P , computes each function
as yi = fi(xp⃗i

) honestly and then builds a Merkle hash
tree to make a commitment. The cloud server constructs n
leaves with the values {vi = H(yi∥p⃗i)} where each p⃗i is the
position of the data in the cloud. Then the cloud server builds
the complete Merkle tree using these leaf values from bottom
to top. The value Ω of the internal tree node is defined as
follows:

Ω(V) = H(Ω(Vleftchild)∥Ω(Vrightchild)) (6)

where V denotes an internal tree node and Vleftchild and
Vrightchild are V ′s two child nodes. Figure 3 shows an
example to construct a commitment tree with data computing
results. We denote R as the root value of the Merkle hash
tree. The cloud server signs the root R and obtains the
signature Sig(R). Finally, the cloud server returns the results
Y = {yi| (1 ≤ i ≤ n)} as well as Sig(R) to the cloud user
or DA for auditing.

v1

y1||p1

v2

y2||p2

v3

y3||p3

v4

y4||p4

v5

y5||p5

v6

y6||p6

v7

y7||p7

v8

y8||p8

A B C D

E F

R

SigCS(R)

Figure 3. Construct Merkle hash tree based commitment scheme

D. Commitment Verification

In this subsection, the cloud users or DA could perform
commitment verification to check the security of the cloud
computation. If using DA verification, the cloud user need
delegate the verification right to DA, which is proceeded
as follows: it sends {F, P, Y } as well as a warrant include
the identity of the delegatee and the expired time to DA for
auditing.

Note that, DA not only checks if the data has been
appropriately stored at the cloud server but also ensures if the
computation process has been well performed. Even though
DA is expected to have more powerful computational and
transmission capability than the cloud users, it is not cost-
effective for DA to re-compute each fi(·) and to check if the
cloud storage and computation is well proceeded. Thus, the
probabilistic sampling technique is adopted here to reduce
the overall verification cost. The detailed protocol includes
the following steps:

1) Audit Challenge Step: When DA starts to audit the
data storage and check the computational results, it picks a
random subset S = {c1, c2, ..., ct} from the domain [1, n].
c1, c2, ..., ct are the samples for auditor the verifying the
data results. Then DA sends this challenge request to cloud
server as well as the warrant.

2) Audit Response Step: When the cloud server receives
the audit challenge, it first verifies the warrant to check
whether it is expired. Then for each ci ∈ S, the cloud server
finds in the Merkle hash tree a path ϕci from the leaf to the
root. For each node on this path ϕci , cloud server sends
the sibling sets to DA. Take Figure 3 for an example. The
challenge on f4(x4) needs to compute a path ϕ4 with the
vertices {v4, B,E,R}. To perform this computation, each
node’s sibling vertices is required to compute the root R.
This means that the cloud server need to return the data x4,
its signature σ4, as well as the value set {v3, A, F} back to
challenger. We show them in black in the Figure 3.

3) Response Verify Step: When DA gets the values from
the cloud server, it needs to verify two kinds of correctness.
As shown in Algorithm 1, firstly, DA needs to check whether
the cloud server uses the data in the request position, not
other positions. It verifies

the signature σi using the equation

Σ′
i

?
= ê(Ui +H2(Ui∥mi)QIDi , skDA). (7)

If the signature is correct, it is convinced that the cloud
server uses the right position data. Otherwise, the cloud
server’s cheating behave is detected. Secondly, it checks the
correctness of the result y∗ci . If the equation y∗ci = fci(xp⃗ci

)
is incorrect, the cloud server’s cheating behave is caught
at once. If the y∗ci is correct, the verifier uses the commit
information R to ensure that each yci is used at the beginning
time of building the Merkle hash tree: the verifier uses the
correct fi(xp⃗i

)∥p⃗i as one leaf and its sibling to reconstruct

61575757

Algorithm 1: The Probabilistic Sampling Cloud Com-
putation Auditing Protocol

1: Set retValue=valid;
2: for A sampling index τ do
3: Fetch the sampling data and its signature;
4: if IsSignatureWrong(τ) then
5: retValue=invalid;
6: end if
7: if IsComputingWrong(τ) then
8: retValue=invalid;
9: end if

10: Fetch the sibling data;
11: Reconstruct the root value R(τ);
12: if IsRootWrong(R(τ)) then
13: retValue=invalid;
14: end if
15: end for

return retValue;

the root R∗ of the tree by equation (6). Only if R∗ = R, the
verifier can trust that all of the fci(xp⃗ci

) had been computed
before the tree was built.

4) Return Step: DA returns true if the cloud server’s
cheating behave is not caught in all of the challenges. The
cloud user is convinced that the cloud server has not cheated
with a high probability. Otherwise, returns false. The cloud
user drops the computing results and starts a new computing
request instead.

VI. IMPROVING AUDITING EFFICIENCY WITH BATCH
VERIFICATION

Considering the fact that the major communication and
computation overhead comes from verification of the com-
mitment tree root signature, in this section, we introduce
several advanced protocols to further reduce the computa-
tional and communication overhead.

The basic idea comes from aggregate signatures. By
using identity based aggregate signatures, our scheme can
achieve almost constant computation overhead for DA and
cloud server. Cloud servers can concurrently handle the
multiple verification request not only from one user but
also from the different cloud users. Assume that a set of
users {ui|1 ≤ i ≤ k}, each of which generates signature
{σij |1 ≤ j ≤ ni} on message {mij |1 ≤ j ≤ ni}.
The cloud servers do as follows: ΣA =

∏k
i=1

∏ni

j=1 Σij ,
UA =

∑k
i=1

∑ni

j=1(Uij + H(Uij∥mij)QIDi). Then the
cloud servers use their secret keys to verify

ê(UA, skCS)
?
= ΣA (8)

The correctness is as follows:

ΣA =
k∏

i=1

ni∏
j=1

ê(Vij , QCS) = ê(
k∑

i=1

ni∑
j=1

Vij , QCS)

= ê(

k∑
i=1

ni∑
j=1

(rij +H2(Uij∥mij))skIDi , QCS)

= ê(

k∑
i=1

ni∑
j=1

(Uij +H2(Uij∥mij)QIDi), skCS)

= ê(UA, skCS). (9)

The computational complexity of our scheme is analyzed
as follows. Note that the signature combination can be
performed incrementally and the computational cost are
almost measured by the expensive pairing operations. It is
obvious that given ξ unauthenticated signatures, in the batch
verification, the major computational cost is bounded by 2
pairings while it costs 2ξ pairings by individual verifica-
tion, which is a significant improvement on computational
efficiency.

If the verification succeeds for all the sample set S, the
verifier is convinced that the cloud has not cheated as a high
probability.

VII. SECURITY ANALYSIS AND PERFORMANCE
EVALUATION

A. Uncheatability analysis

To analyze our uncheatable cloud computing, in this sec-
tion, we evaluate the sampling performance of the proposed
scheme in terms of the number of sampling blocks that needs
to be retrieved.

We first define the FCS as the event that the cloud server
could successfully cheat through guessing the results of
functions. Let R be the range of function f . Thus, the
probability that a cloud server can randomly guess the
correct result of f(x) is 1

R . For most f of interest, |R|
would be quite large. Besides, we can adapt the concept of
Computing Secure Confidence in the previous. Therefore,
the cloud server could successfully cheat a t time-sampling
scheme with the probability as follows.

Pr[FCS] =

(
CSC + (1− CSC)

1

R

)t

. (10)

Since the R > 1, Pr[FCS] goes to 0 when the sampling
size t is large enough. Thus, we have

Pr[FCS] < ϵ. (11)

We also define PCS is the event that the cloud server
could successfully cheat through using the data on the dif-
ferent positions. We also use the concept of Storage Secure
Confidence. In t time-sampling scheme, the probability the

62585858

cloud can successfully using the data on the invalid positions
is as follows.

Pr[PCS] =
(
SSC+(1−SSC)Pr[SigForge]

)t

(12)

where Pr[SigForge] is the probability that the cloud
server could forge the digital signatures, which is very small
in our model. Pr[PCS] will go to 0 when the sampling size
is large enough. We have

Pr[PCS] < ϵ. (13)

From our definition 1, we can define the cloud server
cheats successfully if the event FCS or event PCS takes
place. Here, we consider the assumption that FCS and PCS
are independent. Thus, the probability that the cloud server
can cheat successfully is computed as follows.

Pr[Cheating Successful] = Pr [FCS ∪ PCS]

= Pr[FCS]+ Pr[PCS] (14)

From the inequation (11) and (13), (14) can be reduced to

Pr[Cheating Successful] < ϵ. (15)

To get more accurate results, we evaluate the sampling size

0
0.2

0.4
0.6

0.8
1

0

0.5

1
0

20

40

60

80

100

Computing Secure ConfidenceStorage Secure Confidence

S
a

m
p

lin
g

 s
iz

e

Figure 4. Required sample size achieving uncheatable cloud computing
given ϵ = 0.0001)

by numerical method. Given ϵ = 0.0001, Figure 4 shows that
how large t should be for the different CSC and SSC. From
the figure, we can find that the probability can be below ϵ
when t is larger than a certain number. When we consider
such a situation that the cloud server has computing with half
CSC and half SSC of the task, the range of the domain is
R = 2, we need at least 33 samples to ensure the probability
of successful cheating to be below ϵ = 0.0001. When R is
large enough, (i.e., R → ∞, it is almost impossible to make
a correct guess on f(x) without computing it), we only need
15 samples. Therefore, the cloud server can successfully
cheat with a neglect probability in our cloud computing.

Theorem 1: From the discussion above, our cloud com-
puting is uncheatable.

B. Privacy analysis

To analyze our privacy level, we compare the probability
with cryptographic assumptions in the section IV. In our
privacy enhanced protocol, our designated verifier signature
scheme could be proved secure based on the assumption
BDH in the random oracle model. Therefore, the cloud
servers can confirm the users’ identity since any other users
can not forge these data signature pairs. Besides, even the
cloud servers are compromised by attackers, it can not
convince others the users’ data since the cloud server can
generate the signature of themselves in our model.

The only way for the cloud servers is to forge the original
signature of the cloud users, which leads to solve the the hard
problem of the assumption. We assume that the probability
of solve a hard problem is ϵ for any algorithms existing.
From the discussion above, we have

Pr[InfoLeak] ≈ Pr[SigForge] < ϵ. (16)

From the definition 2, our cloud computing is privacy pre-
serving with a neglect probability. We omit the cryptographic
proving procedure for space limited.

Theorem 2: From the discussion above, our cloud com-
puting is privacy preserving.

C. Optimal sample set size to minimize total cost

To generally estimate the total cost for our sampling
algorithm in the protocol, we assume that it can be divided
into three kinds of cost. Let Ctrans and Ccomp be the trans-
mission cost and the computational cost for each sampling
message-signature pairs, respectively. We also define the cost
Ccheat that is caused by the undetected cheating attacks. The
total cost Ctotal for a sample set of t is as follows:

Ctotal = a1 · t ·Ctrans + a2 ·Ccomp + a3 ·Ccheat · qt (17)

where q is the probability of cheating successful and a1,
a2, and a3 are coefficients for these costs, respectively. The
following theorem gives the optimal sample set t to achieve
a minimal total cost.

Theorem 3: Given the transmission cost Ctrans, compu-
tational cost Ccomp and successfully cheating cost Ccheat,
and the probability of cheating successful q, the optimal
sample set t for achieving the minimal cost is

t =

⌈
ln(− a1 · Ctrans

a3 · Ccheat · ln q
)/ ln q

⌉
(18)

Proof: Since Ctotal = a1 · t · Ctrans + a2 · Ccomp + a3 ·
Ccheat · qt, to minimize the total cost Ctotal, we have

dC

dt
= a1 · Ctrans + a3 · Ccheatq

t ln q (19)

63595959

It is easy to check that the derivative is 0 when t =
ln(− a1·Ctrans

a3·Ccheat·ln q)/ ln q. Note that, t must be an integer in
practice.

In order to optimize the cost in practice, we need the detail
cost information such as Ctrans, Ccomp, Ccheat, a1, a2, and
a3. We evaluate them through a history learning process.

D. Performance analysis

To analyze the performance of our scheme, we experiment
in the environment consisted of Intel Core 2 Duo E6550
with 2 GB RAM to evaluate the delay of cryptographic
operations based on cryptographic library MIRACL [28],
which is shown in Table I. We also implement our algorithm
in Matlab 2009a, and substitute various values for t and R
to gain an insight into the behavior of our protocol.

Descriptions Execution Time

Tpmul Time for one point multiplication 0.86 ms
Tpair Time for one pairing operation 4.14 ms

Table I
CRYPTOGRAPHIC OPERATION’S EXECUTION TIME.

Compared with other data auditing schemes in [4], [5], we
mainly consider the verification operation cost in protocol
since it is most expensive cost operation at both cloud server
and verifier side. The computation costs are measured by
pairing and point multiplication operation time. Figure 5
plots the computation cost of verification when the number
of cloud user ranges from 1 to 50. Our protocol is much
more efficient than the previous one since pairing times are
constant in ours while linear in theirs.

0 10 20 30 40 50
0

100

200

300

400

500

600

700

800

900

Cloud user number

C
o
m

p
u

ta
ti
o

n
a
l
ti
m

e
 (

m
s
)

Ours

Time[9]

Time[1]

Figure 5. Comparison of the computational cost among relative schemes

To further demonstrate the suitability of the proposed
scheme, we analyze the computational cost for different

signatures are summarized in Table II , which need to handle
the batch size of η.

scheme individual Verify Batch Verify

RSA η · TRSA NA
ECDSA η · TECDSA NA
BGLS [29] 2η · Tpair (η + 1) · Tpair

Our scheme 2η · Tpair 2 · Tpair

Table II
COMPARISON OF VARIOUS SIGNATURE SCHEME.

VIII. CONCLUSION

In this paper, we propose a privacy preserving designated
verification protocol for data computing security in the
cloud. To the best of our knowledge, it is the first paper
that jointly considers both of the data computing and data
storage security. We define the concept of uncheatable cloud
computing and model the attacks in this concept. Besides,
we introduce a novel data privacy cheating discouragement
concept. To improve the efficiency, the designated verifiers
can concurrently handle multiple sessions from different
users’ verifying requests. By using extensive security and
performance analysis, it is showed that our protocol is secure
and efficient for achieving a secure cloud computing.

ACKNOWLEDGE

This paper is supported by National Natural Science Foun-
dation of China grants. 60972034, 60970110, 60773086, and
National 973 Program No. 2007CB311201. We would also
like to thank anonymous people who helped us in writing
this paper.

REFERENCES

[1] M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz, A. Kon-
winski, G. Lee, D. Patterson, A. Rabkin, I. Stoica et al.,
“Above the clouds: A berkeley view of cloud computing,”
EECS Department, University of California, Berkeley, Tech.
Rep. UCB/EECS-2009-28, 2009.

[2] Marinos and A. Gerard Briscoe, “Community Cloud Comput-
ing,” in Proceedings of Cloud Computing: First International
Conference (CloudCom 2009), Beijing, China, December 1-4,
2009.

[3] A. Haeberlen, “A Case for the Accountable Cloud,” in 3rd
ACM SIGOPS International Workshop on Large Scale Dis-
tributed Systems and Middleware, Big Sky Resort, Big Sky,
MT, October 10-11, 2009.

64606060

[4] C. Wang, Q. Wang, K. Ren, and W. Lou, “Privacy-Preserving
Public Auditing for Data Storage Security in Cloud Comput-
ing,” in 29th IEEE Conference on Computer Communications
(INFOCOM’10), San Diego, California, USA, March 14-19,
2010.

[5] Q. Wang, C. Wang, J. Li, K. Ren, and W. Lou, “Enabling
public verifiability and data dynamics for storage security in
cloud computing,” in 14th European Symposium on Research
in Computer Security (ESORICS’09), Saint Malo, France,
September 21-23, 2009.

[6] G. Karame, M. Strasser, and S. Capkun, “Secure Remote
Execution of Sequential Computations,” in 11th International
Conference on Information and Communications Security
(ICICS’09), Beijing, China, December 14-17, 2009.

[7] W. Du, J. Jia, M. Mangal, and M. Murugesan, “Uncheatable
Grid Computing,” in Proceedings of the 24th International
Conference on Distributed Computing Systems (ICDCS’04),
Hachioji, Tokyo, Japan, March 24-26, 2004.

[8] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner,
Z. Peterson, and D. Song, “Provable data possession at
untrusted stores,” in Proceedings of the 14th ACM confer-
ence on Computer and communications security (CCS’07),
Alexandria, Virginia, USA, October 28-31, 2007.

[9] G. Ateniese, R. Di Pietro, L. Mancini, and G. Tsudik, “Scal-
able and efficient provable data possession,” in Proceedings
of the 4th international conference on Security and privacy in
communication netowrks, Istanbul, Turkey, September 22-26,
2008.

[10] C. Wang, Q. Wang, K. Ren, and W. Lou, “Ensuring data stor-
age security in cloud computing,” in 17th IEEE International
Workshop on Quality of Service (IWQoS’09), Charleston,
South Carolina, USA, July 13-15, 2009.

[11] A. Juels and B. Kaliski Jr, “PORs: Proofs of retrievability for
large files,” in Proceedings of the 14th ACM conference on
Computer and communications security (CCS’07), Alexan-
dria, Virginia, USA, October 28-31, 2007.

[12] H. Shacham and B. Waters, “Compact proofs of retrievabil-
ity,” in Asiacrypt, The 14th Annual International Conference
on the Theory and Application of Cryptology and Information
Security, Melbourne, Australia, December 7-11, 2008.

[13] R. Merkle, “Protocols for public key cryptosystems,” in IEEE
Symposium on Security and Privacy, Oakland, California,
USA, April, 1980.

[14] D. Boneh, B. Lynn, and H. Shacham, “Short signatures from
the Weil pairing,” Journal of Cryptology, vol. 17, no. 4, pp.
297–319, 2004.

[15] C. Erway, A. Kupcu, C. Papamanthou, and R. Tamassia,
“Dynamic provable data possession,” in Proceedings of the
16th ACM conference on Computer and communications
security (CCS’09), Chicago, Illinois, USA, November 9-13,
2009.

[16] P. Golle and I. Mironov, “Uncheatable distributed compu-
tations,” in The Cryptographers’ Track at RSA Conference
2001, San Francisco, CA, USA, April 8-12, 2001.

[17] K. Bowers, A. Juels, and A. Oprea, “HAIL: A High-
Availability and Integrity Layer for Cloud Storage,” in Pro-
ceedings of the 16th ACM conference on Computer and
communications security (CCS’09), Chicago, Illinois, USA,
November 9-13, 2009.

[18] M. Jakobsson, K. Sako, and R. Impagliazzo, “Designated ver-
ifier proofs and their applications,” in Advances in Cryptology
- EUROCRYPT96, 1996.

[19] D. Boneh and M. Franklin, “Identity-based encryption from
the Weil pairing,” SIAM Journal on Computing, vol. 32, no. 3,
pp. 586–615, 2003.

[20] J. Cha and J. Cheon, “An identity-based signature from gap
Diffie-Hellman groups,” in Public Key Cryptography - PKC
2003, 6th International Workshop on Theory and Practice in
Public Key Cryptography, Miami, Florida, USA, January 6-8,
2003.

[21] H. Zhu, X. Lin, R. Lu, X. Shen, D. Xing, and Z. Cao,
“An Opportunistic Batch Bundle Authentication Scheme for
Energy Constrained DTNs,” in 29th IEEE Conference on
Computer Communications (INFOCOM’10), San Diego, Cal-
ifornia, USA, March 14-19, 2010.

[22] R. Steinfeld, L. Bull, H. Wang, and J. Pieprzyk, “Universal
designated-verifier signatures,” in Advances in Cryptology-
ASIACRYPT 2003, 9th International Conference on the The-
ory and Application of Cryptology and Information Security,
Taipei, Taiwan, 30 November - 4 December 2003.

[23] F. Zhang, W. Susilo, Y. Mu, and X. Chen, “Identity-based
universal designated verifier signatures,” Lecture notes in
computer science, vol. 3823, pp. 825–834, 2005.

[24] J. Zhang and J. Mao, “A novel ID-based designated verifier
signature scheme,” Information sciences, vol. 178, no. 3, pp.
766–773, 2008.

[25] B. Kang, C. Boyd, and E. Dawson, “A novel identity-
based strong designated verifier signature scheme,” Journal
of Systems & Software, vol. 82, no. 2, pp. 270–273, 2009.

[26] F. Cao and Z. Cao, “An identity based universal designated
verifier signature scheme secure in the standard model,”
Journal of Systems & Software, vol. 82, no. 4, pp. 643–649,
2009.

[27] A. Bender, J. Katz, and R. Morselli, “Ring signatures:
Stronger definitions, and constructions without random or-
acles,” Journal of Cryptology, vol. 22, no. 1, pp. 114–138,
2009.

[28] M. Scott, “Implementing cryptographic pairings,” in The
first International Conference on Pairing-based Cryptography
(Pairing’07), Tokyo, Japan, July 2-4, 2007.

[29] D. Boneh, C. Gentry, B. Lynn, and H. Shacham, “Aggregate
and verifiably encrypted signatures from bilinear maps,” in
Advances in Cryptology - EUROCRYPT 2003, International
Conference on the Theory and Applications of Cryptographic
Techniques, Warsaw, Poland, May 4-8, 2003.

65616161

